Search

Wie beim Urknall: ALICE-Experiment startet wieder mit Blei-Ionen – Goethe-Universität an Messrekord beteiligt

Nach fünf Jahren Pause wurden mit dem großen Beschleuniger LHC am internationalen Forschungsinstitut CERN wieder Blei-Ionen zur Kollision gebracht. Dabei löst sich die kollidierende Materie für extrem kurze Zeit in ihre Bestandteile auf und erreicht so einen Zustand wie das Universum Millionstel Sekunden nach dem Urknall. Die Teilchenspuren der Kollisionen zeichnet der haushohe ALICE-Detektor auf, an dessen Verbesserung Forschende der Goethe-Universität mitgearbeitet haben. Im ersten Monat der neuen Datennahmeperiode konnte ein neuer Rekord aufgestellt werden: Es wurden 20-mal mehr Kollisionsereignisse aufgezeichnet als in den Datennahmeperioden der vergangenen Jahre zusammen.

Für das Upgrade wurde der ALICE-Detektor geöffnet. Foto: Sebastian Scheid, Goethe-Universität Frankfurt

Am 26. September 2023 erklärte das Beschleunigerteam des Europäischen Kernforschungszentrum CERN in Genf stabile Blei-Strahl Konditionen und läutete damit die erste Datennahme-Kampagne von Blei-Ionen-Kollisionen seit 5 Jahren ein. Bis zum späten Abend des 29. Oktober wurden nun Kollisionen von Blei-Ionen bei der bisher weltweit höchsten Kollisionsenergie von 5.36 Terraelektronvolt pro zusammenstoßender Kernteilchen (Nukleon-Nukleon-Kollision) erzeugt. Nicht nur die Kollisionsenergie, sondern auch die Kollisionsraten wurden im Vergleich zu den Datennahmeperioden der früheren Jahre deutlich erhöht. So konnte der ALICE Detektor, spezialisiert auf die Aufzeichnung der Kollisionen von Bleiatomkernen, 20-mal mehr Ereignisse aufzeichnen als in den vier einmonatigen Datennahmeperioden seit 2010 zusammen.

Dies ist wichtig, da bei den Kollisionen in kürzester Zeit ungeheuer viele Teilchen neu entstehen und wieder zerfallen. Die Aufzeichnung der Spuren dieser Teilchen lässt Rückschlüsse darauf zu, was im Moment des Zusammenpralls und kurz danach genau passiert: Die Teilchen lösen sich in ihre elementaren Bestandteile – Quarks und Gluonen – auf und bilden eine Art „Materiesuppe“, ein sogenanntes Quark-Gluon-Plasma. Unmittelbar danach bilden sich wieder neue, sehr instabile Teilchen, die sich in komplexen Zerfallsketten schließlich in stabile Teilchen umwandeln. Auf diese Weise untersuchen die Forschenden des ALICE-Experiments die Eigenschaften von Materie, wie sie kurz nach dem Urknall vorgelegen hat.

An den Experimenten sind Forschungsgruppen der Goethe-Universität Frankfurt beteiligt. Der neue Rekord wurde möglich, weil der weltweit stärkste Teilchenbeschleuniger, der Large Hadron Collider (LHC), in einer vierjährigen Umbauphase noch einmal verbessert werden konnte. Auch der ALICE-Detektor wurde dieser Umbaupause von 2018 bis 2022 verbessert, um die Spuren der höheren Kollisionsraten des LHC aufzeichnen zu können.

Hierzu war es notwendig, die Auslesedetektoren des zentralen Detektors des Experiments, der sogenannten Spurdriftkammer (engl. Time Projection Chamber, TPC) komplett auszutauschen. Die Projektleitung dieses insgesamt 10-jährigen Unterfangens liegt bei Professor Harald Appelshäuser vom Institut für Kernphysik der Goethe-Universität.

Eine große Herausforderung sind die enormen Datenmengen, die während der Messungen anfallen und allein für die TPC im Bereich von Terabyte pro Sekunde liegen. Dieser Datenstrom muss in Echtzeit mit effektiven Mustererkennungsmethoden prozessiert werden, um die gespeicherte Menge der Daten ausreichend reduzieren zu können. Eigens hierzu wurde der Rechencluster EPN (engl. Event Processing Nodes) für das Experiment aufgebaut. Der EPN-Cluster basiert sowohl auf konventionellen Rechenkernen (CPUs) als auch auf speziellen Grafikprozessoren. Die Leitung des Projekts liegt bei Volker Lindenstruth, Professor für die Architektur von Hochleistungsrechnern an der Goethe-Universität und Fellow am Frankfurt Institute for Advanced Studies (FIAS).

Die Messungen bei höheren Kollisionsraten sind ein großer Erfolg für das Schwerionenprogramm am CERN. Prof Harald Appelshäuser sagt: “Endlich geht es los! Darauf haben wir 10 Jahre lang hingearbeitet. Wir freuen uns auf die Auswertung der jetzt gewonnenen Daten. Danken möchte ich vor allem dem Bundesministerium für Bildung und Forschung für die langfristige Finanzierung, denn Forschungsprojekte in dieser Dimension können nur durch einen so verlässlichen Partner erfolgreich sein.”

Hintergrundinformationen
Meldung: ALICE-Experiment am CERN startet Testbetrieb mit Blei-Ionen (2022)
Über das ALICE-Experiment

Relevante Artikel

Zusammenarbeit bei ELEMENTS

Wie mikroskopische und makroskopische Effekte gemeinsam entschlüsselt werden 1. Pfeiler: Theorie & Simulation Prof. Norbert Pietralla (TU Darmstadt), Prof. Luciano

Öffentliche Veranstaltungen

You cannot copy content of this page