Kapitza-Dirac-Effekt für zeitliche Entwicklung von Elektronenwellen genutzt
Das Zusammenspiel von Elektronen und Licht gehört zu den fundamentalen Wechselwirkungen der Physik. Jetzt ist es mit einem Experiment an der Goethe-Universität Frankfurt gelungen, den sogenannten Kapitza-Dirac-Effekt erstmals in voller Zeitauflösung zu beobachten. Dieser Effekt wurde erstmals vor über 90 Jahren postuliert, seine Feinheiten werden aber erst jetzt sichtbar.
Es war eine der größten Überraschungen in der Geschichte der Naturwissenschaft: Zum Beginn der Quantenphysik vor rund 100 Jahren stellte sich heraus, dass die Bestandteile unserer Materie nicht einfach nur Teilchen sind, sondern auch Wellencharakter aufweisen. Genauso wie Licht an einem Doppelspalt gestreut werden kann und dann Streumuster zeigt, können auch Elektronen Interferenzeffekte zeigen. Die beiden Theoretiker Piotr Kapitza und Paul Dirac konnten im Jahr 1933 beweisen, dass ein Elektronenstrahl sogar von einer stehenden Lichtwelle abgelenkt wird (als Folge der Teilcheneigenschaften) und dass dabei Interferenzeffekte als Folge der Welleneigenschaften zu erwarten sind.
Nun ist es einem deutsch-chinesischen Team um Prof. Reinhard Dörner von der Goethe-Universität Frankfurt gelungen, sich diesen Kapitza-Dirac-Effekt zu nutzen, um sogar die zeitliche Entwicklung der Elektronenwellen sichtbar zu machen, die sogenannte quantenphysikalische Phase der Elektronen. Das berichten die Forschenden im Fachblatt „Science“.
„Ein ehemaliger Doktorand unseres Instituts, Alexander Hartung, hat dieses Experiment ursprünglich aufgebaut“, sagt Dörner. „Er ist mittlerweile Lehrer geworden, und andere Mitarbeiter haben diesen einzigartigen Versuchsaufbau weiterentwickelt und nun für die Vermessung des zeitabhängigen Kapitza-Dirac-Effekts nutzen können.“ Dazu musste auch die theoretische Beschreibung weiterentwickelt werden, denn Kapitza und Dirac hatten die zeitliche Entwicklung der Elektronenphasen damals noch nicht eigens berücksichtigt.
Bei ihrem Experiment schossen die Frankfurter Wissenschaftler zunächst zwei ultrakurze Laserpulse aus entgegengesetzten Richtungen auf ein Xenon-Gas. Diese Femtosekundenpulse – eine Femtosekunde ist eine millionstel milliardstel Sekunde – erzeugten in ihrem Kreuzungspunkt für Sekundenbruchteile ein ultrastarkes Lichtfeld. Dieses entriss Xenon-Atomen Elektronen, es ionisierte sie. Die solchermaßen freigesetzten Elektronen beschossen die Physiker sehr kurz darauf mit einem zweiten Paar kurzer Laserpulse, die im Zentrum ebenfalls eine stehende Welle bildeten. Diese Pulse waren etwas schwächer und erzeugten keine weitere Ionisationen. Dafür konnten sie nun mit den freien Elektronen in Wechselwirkung treten, was sich mit Hilfe eines in Frankfurt entwickelten COLTRIMS-Reaktionsmikroskopes beobachten ließ.
„Im Wechselwirkungspunkt können drei Dinge passieren“, sagt Dörner. „Entweder das Elektron erfährt keine Wechselwirkung mit dem Licht – oder es wird nach links oder nach rechts gestreut.“ Diese drei Möglichkeiten summieren sich nach den Gesetzen der Quantenphysik zu einer bestimmten Wahrscheinlichkeit, die sich in der Wellenfunktion der Elektronen niederschlägt: Die wolkenartige Raum, in dem sich das Elektron mit einer gewissen Wahrscheinlichkeit aufhält, zerfällt sozusagen in dreidimensionale Scheiben. Dabei ist die zeitliche Entwicklung der Wellenfunktion und ihrer Phase davon abhängig, wie viel Zeit zwischen der Ionisation und dem Auftreffen des nachfolgenden Paares von Laserpulsen folgt.
„Damit eröffnet sich eine Vielzahl von spannenden Anwendungen in der Quantenphysik. Hoffentlich werden wir damit verfolgen können, wie Elektronen sich in kürzester Zeit von Quantenteilchen in ganz normale Teilchen verwandeln. Wir haben auch schon Pläne, damit der von Einstein so genannten ‚spukhaften’ Verschränkung zwischen verschiedenen Teilchen weiter auf die Spur zu kommen“, schließt der Wissenschaftler. Wie so oft in der Naturwissenschaft hat es sich also auch hier gelohnt, alterprobte Theorien immer wieder aufs Neue auf den Prüfstand zu stellen.
Publikation: Kang Lin, Sebastian Eckart, Hao Liang, Alexander Hartung, Sina Jacob, Qinying Ji, Lothar Ph. H. Schmidt, Markus S. Schöffler, Till Jahnke, Maksim Kunitski, Reinhard Dörner: Ultrafast Kapitza-Dirac effect. Science (2024)