Konventionelle Antibiotika-Therapie ergänzen

Antibiotika-Resistenzen bedrohen weltweit nicht nur die Gesundheit, sondern gefährden auch den ökonomischen Wohlstand. Eine neue Strategie, Bakterien zu bekämpfen, stellt die Arbeitsgruppe um Prof. Ivan Dikic von der Goethe-Universität in der aktuellen Online-Ausgabe der Fachzeitschrift Nature vor. Die Forscher haben den molekularen Wirkmechanismus eines Legionellen-Toxins aufgeklärt und einen ersten Inhibitor entwickelt.

Die steigende Verbreitung von Resistenzen macht es zunehmend schwerer, gewöhnliche Erkrankungen wie Lungenentzündung oder Salmonellose wirksam zu behandeln. Ursachen für Resistenzen sind der sorglose Umgang mit Antibiotika und die seit mehr als 30 Jahren bestehende Innovationslücke bei der Entwicklung neuartiger Wirkstoffe. Das hat auch wirtschaftliche Konsequenzen: Die Weltbank hat kürzlich berechnet, dass durch Antibiotika-Resistenzen die Bruttoinlandsprodukte weltweit bis zum Jahr 2050 zwischen 1,1 und 3,8 Prozent abnehmen könnten.

Ein vielversprechender Ansatz, mikrobielle Infektionen unter Kontrolle zu bringen, besteht darin, die Schäden in den Zellen und Geweben lokal zu begrenzen. Dazu müssen die von den Bakterien ausgeschütteten Toxine gezielt ausgehebelt werden. Das Forscherteam von Prof. Ivan Dikic, Direktor des Instituts für Biochemie II an der Goethe-Universität Frankfurt, arbeitet seit zehn Jahren in diesem Feld. „Wir glauben, dass wir die konventionelle Antibiotika-Therapie ergänzen können, indem wir bakterielle Effektorproteine gezielt mit rational entwickelten Wirkstoffen ausschalten. So können wir den Patienten helfen, die Infektion zu bewältigen. Das Konzept ist noch relativ neu, erregt aber unter Wissenschaftlern immer mehr Aufmerksamkeit“, erklärt Dikic.

Wie die neue Strategie umgesetzt werden könnte, versucht das Team von Ivan Dikic am Beispiel von Legionellen herauszufinden. Diese Bakterien verursachen Lungenentzündungen und sind insbesondere für immungeschwächte Patienten gefährlich. Erst kürzlich war das Dikic-Team an der Entdeckung eines neuen enzymatischen Mechanismus beteiligt, durch den Legionellen die Kontrolle über ihre Wirtszellen übernehmen. „Wir haben gezeigt, dass die Legionellen mithilfe eines Enzyms, SdeA, einen der wichtigsten zellulären Mechanismen zum Schutz vor Stress aushebeln, nämlich das Ubiquitin-System. SdeA ist demnach ein toxischer Effektor, der die Verbreitung von Bakterien in der Zelle fördert“, erläutert Dr. Sagar Bhogaraju, der am universitären Buchmann Institut für Molekulare Lebenswissenschaften im Labor von Dikic arbeitet.

Jetzt ist der Gruppe von Ivan Dikic ein weiterer Durchbruch gelungen: Sie konnte die atomare Struktur von SdeA aufklären und herausfinden, wie das bakterielle Enzym seine zellulären „Opfer“ vermutlich auswählt. SdeA erzielt seine Wirkung, indem es Ubiquitin an die Proteine der Wirtszelle anheftet. Das Enzym ist einzigartig in seinem Mechanismus, mit dem es eine zweistufige Reaktion katalysiert“, kommentiert Dr. Sissy Kalayil, eine der führenden Frankfurter Wissenschaftlerinnen in dem Projekt. “Unsere Ergebnisse sind extrem spannend, weil sie den Prozess im atomaren Detail aufklären und damit das rationale Design von Hemmstoffen ermöglichen.“

Einen ersten Inhibitor, der das Legionellen-Enzym zumindest im Reagenzglas blockieren kann, haben die Forscher bereits entwickelt. „Durch Aufklärung der grundlegenden Struktur konnten wir nun den Beweis erbringen, dass diese bakteriellen Enzyme gezielt angreifbar sind. Dennoch liegt noch ein langer Weg vor uns, bevor wir den neuartigen Mechanismus möglicherweise therapeutisch nutzen können“, sagt Dikic. „Aber wir bleiben dran, denn sehr wahrscheinlich sind Legionellen nicht die einzigen Bakterien, die diesen Mechanismus nutzen.“

Die Forschungsgruppe von Ivan Dikic ist am Institut für Biochemie II im Fachbereich Medizin und am Buchmann Institut für Molekulare Lebenswissenschaften der Goethe-Universität angesiedelt. Die Gruppe untersucht die Rolle von Ubiquitin bei Erkrankungen wie Krebs, ALS und bei Infektionen.

Publikation //  Kalayil S*, Bhogaraju S*, Bonn F, Shin D, Liu Y, Gan N, Basquin J, Grumati P, Luo Z-Q, Dikic I. Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Nature, Advanced Online Publication, DOI 10.1038/s41586-018-0145-8.
* Co-Erstautoren

Parallel werden in derselben Ausgabe von Nature zwei Artikel von Yue Feng (China) und Yuxin Mao (USA) veröffentlicht, die weitere Details zum molekularen Mechanismus dieses ungewöhnlichen Enzyms beitragen (DOI 10.1038/s41586-018-0146-7 und 10.1038/s41586-018-0147-6

Relevante Artikel

Prof. Dr. Raymond Deshaies © privat

Über gezielten Proteinabbau Krebs heilen

Prof. Dr. Raymond Deshaies vom California Institute of Technology (USA) übernimmt die Friedrich-Merz-Stiftungsgastprofessur 2025. Raymond Deshaies ist Biochemiker und Zellbiologe,

Forschung zur Strukturbiologie wird gestärkt

Eröffnung des deutschen Instruct-Zentrums an der Goethe-Universität An der Goethe-Universität nimmt am 17. Oktober das deutsche Instruct-Zentrum Instruct-DE offiziell seine

Öffentliche Veranstaltungen
„Beifall für Alfred Dregger“ (1982). Michael Köhler vor dem Bild in der U-Bahn-Station, auf dem er (l.) und sein Mitstreiter Ernst Szebedits zu entdecken sind (s. Markierung). © Dirk Frank

Universitäre Foto-Storys

Nach 40 Jahren: Zwei Stadtteil-Historiker haben zu Barbara Klemms berühmten großformatigen Uni-Fotos in der U-Bahn-Station Bockenheimer Warte recherchiert. Interessante, humorvolle

Kind auf einem Roller © Irina WS / Shutterstock

Wie junge Menschen unterwegs sein möchten

Bundesministerium für Forschung, Technologie und Raumfahrt fördert Nachwuchsgruppe CoFoKids an der Goethe-Universität „Von der ‚Generation Rücksitz‘ zu den Vorreitern der

You cannot copy content of this page