Molekularer Regulierung von Herz-Kreislauf-System auf der Spur

Prof. Stefanie Dimmeler, Prof. Harald Schwalbe; Foto: Uwe Dettmar / Goethe-Universität

Die Goethe-Universität hat gemeinsam mit der TU München einen neuen Sonderforschungsbereich (SFB) eingeworben, der in den kommenden vier Jahren von der Deutschen Forschungsgemeinschaft mit circa 11 Millionen Euro gefördert wird. Ein weiterer SFB zur RNA-Forschung wird zum zweiten Mal verlängert. Die Förderung von zwei schlagkräftigen Forschungsverbünden unterstreicht die exzellente Arbeit im Bereich der RNA-Forschung an der Goethe-Universität.

Das Konsortium aus 30 renommierten Forschenden wird im neuen SFB untersuchen, welchen Einfluss sogenannte nicht-kodierende RNAs auf die Entwicklung, Regulation und zelluläre Prozesse des Herz-Kreislauf-Systems haben. Im verlängerten SFB geht es um die Struktur und Funktion diverser RNA-Varianten in Biologie und Chemie.

Ribonukleinsäuren, kurz RNA, galten lange nur als Botenmoleküle, die Erbinformation für die Herstellung von Proteinen kodieren. Inzwischen weiß man, dass mehr als 90 Prozent der RNA-Moleküle eine erstaunliche Vielfalt anderer Aufgaben erledigen. Viele von ihnen regulieren Abläufe in der Zelle (siRNA, miRNA und sRNA), andere können faszinierende drei-dimensionale Strukturen bilden und dienen als Enzyme oder Schalter für zelluläre Prozesse. Auch bei Erkrankungen des Herzkreislaufsystems spielen nicht-kodierende RNAs eine maßgebliche Rolle.

Der von Prof. Stefanie Dimmeler vom Institut für Kardiovaskuläre Regeneration an der Goethe-Universität Frankfurt und Prof. Stefan Engelhardt vom Institut für Pharmakologie und Toxikologie an der TUM koordinierteneue Transregio SFB „Non-coding RNA im kardiovaskulären System“ wird erforschen, wie nicht-kodierende RNAs im Herz-Kreislauf-System hergestellt und transportiert werden. Weiterhin geht es darum, wie sie zelluläre Abläufe beeinflussen und welche Rolle sie bei der Entstehung und Heilung von Herz-Kreislauf-Krankheiten spielen. Langfristig sollen auch neue therapeutische Zielmoleküle gefunden werden.

Weitere Partner sind die Ludwig-Maximilians-Universität (LMU), das Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim und die Medizinische Hochschule Hannover.

SFB geht in die dritte Förderperiode

Im Fokus des verlängerten SFBs „Molekulare Mechanismen der RNA-basierten Regulation“  unter der Sprecherschaft von Prof. Harald Schwalbe, Institut für Organische Chemie und Chemische Biologie, steht die Funktion der RNA in Chemie und Biologie. Die Forschenden der Goethe-Universität und der TU-Darmstadt interessiert insbesondere, wie RNAs die Genexpression regulieren. Während der ersten beiden Förderperioden (insgesamt acht Jahre) haben die Forschenden diverse spektroskopische Methoden etabliert, um die Struktur der komplexen Makromoleküle zu entschlüsseln. Diese Methoden sollen nun von in vitro-Systemen (präparierte Moleküle im Reagenzglas) auf lebende Systeme (in vivo) übertragen werden. Die Forschenden erwarten neue Einblicke in die Funktion der verschiedenen RNA-Varianten in lebenden Zellen.

Stefanie Dimmeler und Harald Schwalbe sind sich einig: „Diese weitere Förderung der RNA-Forschung in Frankfurt wird dazu beitragen, dass die Goethe-Universität ihre Vorreiterschaft in diesem Bereich weiter ausbaut.“

Relevante Artikel

Um Patienten besser auf große Operationen vorzubereiten, wurde bei Capreolos eine spezielle App entwickelt. Foto: Privat

Starthilfe für schnelles Wachstum

Um Forschungsergebnisse in die praktische Umsetzung zu bringen, helfen Innovectis und Unibator beim Überwinden von Hürden Aus dem Fachbereich Medizin

Maike Windbergs, Foto: Uwe Dettmar

Treffsicher ins Ziel

Neue Strategien sollen Wirkstoffe genau dorthin bringen, wo sie gebraucht werden Das beste Medikament ist völlig nutzlos, wenn der Wirkstoff

Hochdurchsatzanalyse: Ein Pipettierroboter bereitet Proben für die Proteinanalyse vor. Nach chromatographischer Auftrennung werden massenspektrometrisch die Molekularmassen bestimmt. Foto: Uwe Dettmar

Ein Werkzeugkasten für neue Arzneistoffe

Neue Substanzbank soll Forschung und Arzneimittelentwicklung beschleunigen Viele Medikamente basieren auf Kleinmolekülen. Sie entfalten ihre heilende Wirkung im Körper, indem

Dr. Ah Jung Heo, Postdoc im Labor Đikic, forscht daran, wie krankheitsrelevante Proteine gezielt abgebaut werden könnten. Foto: Peter Kiefer

Krankmacher gezielt entsorgen

Wie durch Umprogrammierung von Zellen schädliche Proteine abgebaut und Krankheiten bekämpft werden können Das kleine Protein Ubiquitin kommt in den

Wie Medikamente sehen die Kapseln aus, über die Patienten »gute« Bakterien zu sich nehmen, die Krankheitserreger im Darm verdrängen können. Foto: AG Maria Vehreschild

Therapie mit Bakterien

Wie »gute« Darmbakterien gefährliche Erreger bekämpfen könnten Dank Antibiotika haben bakterielle ­Infektionen ihren Schrecken weitgehend verloren. Für Menschen mit geschwächtem

Auf solchen Kulturplatten wird im Institut für Medizinische Mikrobiologie und Krankenhaushygiene geprüft, ob Bakterien Resistenzen gegen Antibiotika zeigen. Foto: Universitätsklinikum Frankfurt

Resistente Erreger im Visier

Strategien gegen die Rückkehr gefährlicher Infektionskrankheiten Resistente Krankheitserreger sind weltweit auf dem ­Vormarsch. Der Mikrobiologe Volkhard Kempf und seine Mitarbeiterinnen

Öffentliche Veranstaltungen
Eine Drohne fliegt über ein überschwemmtes Gebiet. Copyright: PhotoChur/Shutterstock

Podcast: Cybersicherheit im Drohnenschwarm

Wenn Feuerwehr und Polizei bei einer Katastrophe wie der Ahrtal-Überschwemmung oder bei plötzlichen Prügeleien während einer Großdemonstration eine schnelle Übersicht

Helfen, weil einem selber geholfen wurde

Die Psychotherapeutische Beratungsstelle (PBS) der Goethe-Universität ist ein niedrigschwelliges Angebot für alle Studierenden. Ein kürzlich erfolgter Spendenaufruf zielt darauf, das

Jubiliäumslogo 10 Jahre Rhein-Main Universitäten

10 Jahre Rhein-Main-Universitäten

Die Rhein-Main-Universitäten (RMU) feiern dieses Jahr ihr 10-jähriges Jubiläum! Das hat die RMU zum Anlass genommen, ihr neues Corporate Design,

You cannot copy content of this page